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ABSTRACT

Gravity waves propagating at the surface of a fluid of infinite depth are

considered. The problem is formulated in terms of a series expansion due to A..

Havelock. The series is truncated after a finite number of terms and the

unknown coefficients are found by collocation. It is shown that this simple

numerical procedure yields accurate results for waves of arbitrary steepness..,, *j .J
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SIGNIFICANCE AND EXPLANATION

Over the last 15 years many efficient numerical schemes have been

developed to compute steep vater waves. These schemes are often based on

inteqro-differential equation formulations or on collocation techniques.

In this paper we present a new numerical approach based on an expansion

proposed by Havelock in 1919. This scheme is very easy to implement and

yields highly accurate results for waves of arbitrary steepness.
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STEEP GRAVITY WAVES: HAVELOCK'S METHOD REVISIrED eat

Jean-arc Vanden-Sroeck*

1. Introduction

This paper deals with the numerical computation of periodic two-dimensional gravity

waves propagating at the surface of a fluid of infinite depth. This problem was

considered before by many investigators. Most of the existing numerical procedures belong

to one of two main classes. ""-

In the first class the problem is formulated as an integro-differential equation for "

the free surface profile. This equation is discretized and solved numerically by Newton's

method (see for example Schwartz and Vanden-Broeck12 , Chen and Saftman2 , Vanden-Broeck

Schwartz 1 5 , and Vanden-groeck 14 ).

In the second class the solution is represented by a Fourier expansion. The unknown

rourier coefficients are found analytically as series in powers of a parameter equivalent

to the wave steepness (Stokes 13 , Schwartzi 1 , Lonquet-Higgins7 , Cokelet4) or numerically by

collocation (Chen and Saffman3 , Rienecker and renton10 ).

Numerical schemes of the second class are usually inefficient to compute directly

steep waves because the Fourier coefficients decay too slowly as the wave height

approaches its maximum. kccurate solutions can however be obtained indirectly by

recasting the fourier expansion as Pads approximants (S z Lonquet-igins7 ,

Cokelet4 ). On the other hand, very steep waves can be calculated directly by using

numerical schemes of the first class (Schwartz and Vanden-Broeck 1 2 , Chen and Saffman 2 ,

Vanden-Broeck and Schwartz s).
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successful numerical procedures of the second class have been developed to compute

directly the highest wave (TMichells, Olf* and Rottman'9 Williams"6 ). The basic idea or

* these numerical procedures is to represent the solution by an expansion which takces into

* account the tact that the highest wave has a sharp crest with a 1200 degree angle.

in this paper we present a numerical scheme of the second class which enables us to

compute directly very steep waves. Our procedure follows closely the workc of Ravelockc6

and includes as a particular case Olfe and 1rootman's scheme.
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2. Numerical Results

We consider two-dimensional periodic waves of wavelength A and phase velocity C

propaqating under the influence of gravity q at the surface of a fluid of infinite

depth. We choose a frame of reference in which the waves are steady and we introduce *.•

dimensionless variables by taking A as the unit length and C as the unit velocity. I

The effects of compressibility, viscosity and surface tension are neglected. -

We introduce cartesian coordinates with the x-axis at the mean water level and the y-

axis directed vertically upwards. Gravity is acting in the negative y-direction. Next we .--

define the complex potential f 9+ 1* and the complex velocity W - U - iv. Here q

is the potential function, * the stream function, u the x-component of the velocity

and v the y-component of the velocity. Without loss of generality we choose - 0 on

the free surface and 9 - 0 at one crest.

The condition of constant pressure (p - 0) on the free surface can be written

W2 + ~!y -1

where

21C
u -- -'- ..(2)

13X
Following Stokes13 we seek W as an analytic function of f - * + iO in the lower half

plane *< 0. This function is periodic and tends to one as f + -. Thus we have

W(f + 1) - W(f) (3)

W+ 1 as f - (4)

We find it convenient to eliminate y from (1) by differentiating (1) with respect to 9.

Ulsing the identity

_+ i 3.w-1 (5) ,..

we obtain

w t w L Tw .o, p - (6)

Followinq Cokelet4 we define the amplitude parameter E2 by the relation

-3-
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C2 I IW(0)l l.(1)l2 (7)

For the highest wave W(0) - 0 and C = 1. In general C ranges between 0 and 1.

The relations (3) and (4) show that W can be represented by the following

expansion:

W(f) - 1 + bne 
i 2 nf (8)

n-i

Because of the symmetry of the wave about f - 0, the coefficients bn are real. They

have to be found to satisfy (6) on - 0. This can be achieved approximately by using

the collocation procedure mentioned in the introduction. Thus we truncate the series in

(8) after N terms and we Introduce the N mesh points

21 4N 11,•..,N. •(9)4N '

Using (8) we obtain W(oI ) in terms the coefficients bn . Substituting these expressions

into (6) we obtain 4 nonlinear algehraic equations for the N + I unknown.

ubl...,b. Another equation is obtained by using (7) where e2 is specified. This

sytem of N + I equations is solved by Newton's method. Once the coefficient bn are .1.'

found, the free surface profile can be obtained by integrating numerically (5).

In Table I we present numerical values of p versus e2 obtained with N 60. For

comparison we also show the accurate values of u obtained by Cokelet4 . Our values agree

with those of Cokelet to 5 decimal places for C2 ( 0.6. However, the accuracy of our

results decreases rapidly as £2 approaches 1. This is due to the slow convergence of %

the expansion (8) as the wave of maximum height is approached.

The highest wave, (i.e. C2 = 1) is characterized by a corner at the crest with an

enclosed angle of 120* (Stokes 13 , Amick et al. 1 ). Therefore

W(f) - f
1
/
3 

as f + 0 • (10)

rollowinq Micheol 8 and Olte and Rootman 9 we compute the hiqhest wave by replacing (8) by

W(f) I (I e-
2
iwf)1/

3
(1 + y Cne-

2
iwnf) * (11)

n-i
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Table I: Values of u for 0.6 £2 C 0.99 obtained

by using (8).

C2 N - 60 Cokelet

0.6 1.12229 1.12229

0.8 1.17209 1.17093

0.9 1.20088 1.19014

0.94 1.21684 1.19404

0.99 1.25358 1.19329

The expansion (11) satisfies (10). We truncate the expansion (11) after N - 1 terms and

satisfy (6) at the M mesh points (9). This yields M equations for the N unknowns .

MC1 .... 1 . This system was first solved by Olfe and Rootman
9
. In particular they

found U - 1.93072. We have repeated the calculation and confirmed this value.

The previous considerations sugest to combine the advantages of (8) and (11) by

representing the solution by the expansion

W(f) -(I Se8 -i2vf 1/3 1 + dne6 -21wnf 1  (12)
n-0 .... :

This expansion was first proposed by Ravelock6 . As c * 0, B * 0 and (12) approaches

(8). -urthermore B I 1 as £ + 1, so that (12) includes (11) as a particular case.

We now truncate (12) after N - I terms and satisfy (6) at the N mesh points

(9). Thus we obtain N equations for the N + 1 unknowns Stdl...,dN_ 1. The last

equation is qiven by (7) where 2 is specified.

Nqumerical values of 4 versus C2 for N - 60, 80 and 120 are presented in Table

IT. The values obtained by Cokelet
4 

are also shown in the table. These results indicate

that the scheme converges as N increases. rurthermore, the procedure yields values as

accurate as those of (*okelet
4 

for values of e close to one. A comparison between the -

%
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values for N =60 in Tables I and 11, show clearly that the expansion (12) converges

much faster than the expansion (8). a

Table Ili Values of 0 for 0.6 4 C2 C 0.99 obtained by using (12).%

C2N - 60 N - 60 N -120 Cokelet

0.6 1.12229 1.12229 1.12229 1.12224

0.8 1. 17096 1.17094 1.17093 1. 17093

0.9 1.19007 1.19025 1.19019 1.19014

0.94 1.19310 1.19367 1.19409 1.19404

0.99 1.19321 1.19324 1.19332 1.19329

It is worthwhile mentioning that Grant 5 and Schwartz
11 have demonstrated that the

Havelock expansion (12) produces the wrong type of singularities above the fluid (i.e.

in > 0). This doss not of course invalidate the Ravelock expansion. In fact, our .-

nuerical results show that this expansion is rapidly convergent inside the fluid and on

the free surface (i.e. in 4'(0).

-6- .
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